5.7. Exercises on sequences and series

Exercise 1: linear and exponential growth
A square with side length 1 dm consecutively grows smaller squares on three of its four sides. The squares added in the \(n \) th step have only one third of the side length of the squares added in the previous step \(n - 1 \).

a) Calculate the circumference \(U_n \) after \(n = 0, 1, 2, 3 \) and 4 steps.
b) What is the difference \(U_{n+1} - U_n \) of the circumference from step \(n \) to step \(n + 1 \)?
c) Find an expression of \(U_{n+1} \) in terms of \(U_n \).
d) Find an expression of \(U_n \) in terms of \(n \).
e) Calculate the area \(A_n \) of the shape after \(n = 1, 2, 3 \) and 4 steps.
f) What is the difference \(A_{n+1} - A_n \) of the area from step \(n \) to step \(n + 1 \)?
g) Find an expression of \(A_{n+1} \) in terms of \(A_n \).
h) Find an expression of \(A_n \) in terms of \(n \).

Hint: \(1 + x + x^2 + x^3 + ... + x^n = \frac{1 - x^{n+1}}{1 - x} \).
i) Calculate \(A_{100} \) and \(U_{100} \). Describe the trend of \(U_n \) and \(A_n \) for ever larger \(n \). Draw conclusions about the circumference of natural places like for example an island.
j) Determine the limit \(\lim_{n \to \infty} A_n \).

Exercise 2: Calculating terms with recursive and general formulae
Calculate the first 5 terms \(a_0, ..., a_4 \) and draw a diagram. Can you guess the limit for \(n \to \infty \)?

a) \(a_n = 100 \cdot 2^n \) e) \(a_{n+1} = a_n + \frac{1}{2} \) with \(a_0 = 3 \)
b) \(a_n = 100 - 50 \cdot 2^n \) f) \(a_{n+1} = a_n + \frac{1}{2} a_n \) with \(a_0 = 3 \)
c) \(a_n = \frac{1}{n+1} \) g) \(a_{n+1} = a_n + \frac{1}{2} (5 - a_n) \) with \(a_0 = 3 \)
d) \(a_n = (n+1)(n+2) \) h) \(a_{n+1} = a_n + \frac{1}{20} a_n (5 - a_n) \) with \(a_0 = 3 \)

Exercise 3: Finding recursive and general formulae for given terms of a sequence
Find the recursive formula and the general formula for the sequence with the terms given:

a) \(a_0 = 1; a_1 = 3; a_2 = 5; a_3 = 7; a_4 = 9 \) e) \(a_0 = 0; a_1 = \frac{1}{2}; a_2 = \frac{2}{3}; a_3 = \frac{3}{4}; a_4 = \frac{4}{5} \)
b) \(a_0 = 3; a_1 = 6; a_2 = 12; a_3 = 24; a_4 = 48 \) f) \(a_0 = 1; a_1 = \frac{2}{3}; a_2 = \frac{4}{9}; a_3 = \frac{8}{27}; a_4 = \frac{16}{81} \)
c) \(a_0 = 2; a_1 = 6; a_2 = 18; a_3 = 54; a_4 = 162 \) g) \(a_0 = -1; a_1 = 1; a_2 = \frac{7}{5}; a_3 = \frac{11}{7}; a_4 = \frac{5}{3} \)
d) \(a_0 = 2; a_1 = 5; a_2 = 10; a_3 = 17; a_4 = 26 \) h) \(a_0 = 0; a_1 = \frac{1}{3}; a_2 = \frac{3}{9}; a_3 = \frac{1}{3}; a_4 = \frac{16}{81} \)

Exercise 4: Converting general formulae into recursive formulae
Find a recursive formula for the given general formula:

a) \(a_n = 3n + 2 \) b) \(a_n = n^2 - 2n \) c) \(a_n = 3^n \) d) \(a_n = \frac{n}{n+1} \)

Exercise 5: Converting recursive formulae into general formulae
Find an general formula for the given recursive formula:

a) \(a_{n+1} = a_n - 3 \) with \(a_0 = 2 \) c) \(a_{n+1} = a_n + 2n + 2 \) with \(a_0 = 0 \)
b) \(a_{n+1} = 0,8a_n \) with \(a_0 = 20 \) d) \(a_{n+1} = a_n + 2n + 1 \) with \(a_0 = 0 \)
Exercise 6: Monotonicity of a sequence
Examine the following sequences on monotonic increasing or decreasing behavior:

a) \(a_n = \frac{n-1}{n+1} \)

b) \(a_n = \sqrt{n^2 - n} \)

c) \(a_n = n^3 - 3n^2 \)

d) \(a_n = n^3 \cdot 2^{-n} \)

Exercise 7: Boundedness of a sequence
Examine the following sequences on upper and lower bounds:

a) \(a_n = \frac{n}{n+1} \)

b) \(a_n = \sqrt{n^2 + n} \)

c) \(a_n = n^2 - n^3 \)

d) \(a_n = n^3 \cdot 3^{-n} \)

Exercise 8: Limit of a sequence
Find the limit \(\lim_{n \to \infty} a_n \) and give reasons.

a) \(a_n = \frac{n+2}{n+1} \)

b) \(a_n = \frac{1}{n} \sqrt{n^2 + n} \)

c) \(a_n = \frac{1}{n} \sin(n) \)

d) \(a_n = n^3 \cdot 2^{-n} \)

Exercise 9: Convergence of a sequence
Examine the sequence \((a_n) \) for \(n \geq 1 \) on monotonicity and boundedness. Then draw a conclusion about its convergence:

a) \(a_n = \frac{1-4n}{1+2n} \)

b) \(a_n = \frac{n-1}{2n} \)

c) \(a_n = \frac{2^n + 3^n}{2^n - 3^n} \)

d) \(a_n = \frac{n\sqrt{n} + 10}{n^2} \)

Exercise 10: Series and sigma notation
Fill in the blanks:

<table>
<thead>
<tr>
<th>generating sequence (a_n)</th>
<th>series (\sum_{k=0}^{n} a_k)</th>
<th>corresponding function (f(x))</th>
<th>Integral (\int_{1}^{n} f(x) , dx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{n})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \ldots)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \ldots)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\frac{1}{x(x+1)} = \frac{1}{x} - \frac{1}{x+1})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exercise 11: Arithmetic series
a) Calculate \(\sum_{k=0}^{20} a_k \) and \(\sum_{k=40}^{100} a_k \) for the sequence \(a_n = 2 + \frac{n}{10} \).

b) Calculate \(\sum_{k=0}^{16} a_k \) and \(\sum_{k=40}^{80} a_k \) for the sequence \((a_n) \) with \(a_0 = 3 \) and \(a_{n+1} = a_n + \frac{1}{2} \).

c) Calculate the initial value \(a_0 \) and the common difference \(d \) for the arithmetic sequence \((a_n) \) with \(\sum_{k=0}^{10} a_k = 22 \) and \(\sum_{k=5}^{6} a_k = 7 \).

d) Calculate the common difference \(d \) for the arithmetic sequence \((a_n) \) with \(\sum_{k=10}^{90} a_k = 31 \) and initial value \(a_0 = 1 \).

Exercise 12: Geometric series
a) Calculate \(\sum_{k=0}^{20} a_k \) and \(\sum_{k=70}^{100} a_k \) for the sequence \(a_n = 100 \cdot 0.9^n \).

b) Calculate \(\sum_{k=0}^{10} a_k \) and \(\sum_{k=45}^{50} a_k \) for the sequence \((a_n) \) with \(a_0 = 3 \) and \(a_{n+1} = 1.2 \cdot a_n \).

c) Calculate initial value \(a_0 \) and common ratio \(q \) for the geometric sequence \((a_n) \) with \(\sum_{k=0}^{7} a_k = 641 \) and \(\sum_{k=0}^{3} a_k = 625 \).

d) Calculate initial value \(a_0 \) and common ratio \(q \) for the geometric sequence \((a_n) \) with \(\sum_{k=0}^{4} a_k = 336.16 \) and limit \(\sum_{k=0}^{\infty} a_k = 500 \).
Exercise 13: Limit of a series
Examine the series \(\sum_{k=1}^{n} a_k \) on monotonicity and boundedness. Then draw a conclusion about its convergence:

\[
\begin{align*}
a) \sum_{k=1}^{n} \frac{1}{k^2} &= \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \\
b) \sum_{k=1}^{n} \frac{1}{(2k+1)^2} &= \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \ldots + \frac{1}{(2n+1)^2} \\
c) \sum_{k=1}^{n} \frac{1}{3^k} &= \frac{1}{3^1} + \frac{1}{3^2} + \frac{1}{3^3} + \ldots + \frac{1}{3^n} \\
d) \sum_{k=1}^{n} \frac{1}{n+k} &= \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \ldots + \frac{1}{2n}
\end{align*}
\]

Exercise 14: Mathematical induction
Prove with mathematical induction
a) \(2 + 4 + 6 + \ldots + 2n = n(n + 1) \) for \(n \geq 1 \)

b) \(1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{1}{6} n(n+1)(2n+1) \) for \(n \geq 1 \)

c) \(6 + 24 + 60 + \ldots + n(n + 1)(n + 2) = \frac{1}{4} n(n+1)(n+2)(n+3) \)

d) \(x^0 + x^1 + x^2 + x^3 + \ldots + x^n = \frac{1-x^{n+1}}{1-x} \) for \(n \geq 0 \).

e) \(1 + 2x + 3x^2 + 4x^3 + \ldots + nx^{n-1} = \frac{1-(n+1)x^n + nx^{n+1}}{(1-x)^2} \) for \(n \geq 1 \)

f) The sequence \(a_n \) with \(a_1 = 2 \) and \(a_{n+1} = a_n + (n + 1)(n + 2) \) has the general formula \(a_n = \frac{1}{3} n(n+1)(n+2) \).

g) The sequence \(a_n \) with \(a_1 = \frac{3}{4} \) and \(a_{n+1} = a_n - \frac{a_n}{(3n+4)(2n+1)} \) has the general formula \(a_n = \frac{2n+1}{3n+1} \).

h) \(8^n - 1 \) is divisible by 7 for \(n \geq 1 \)

i) \(n^3 - n \) is divisible by 6 for \(n \geq 2 \)

j) \((1 + x)^n > 1 + nx \) for \(n \geq 2, x > -1 \) and \(x \neq 0 \) (Bernoulli’s inequality)

Exercise 15: Monotonicity and Boundedness

a) Show by mathematical induction that the sequence \((a_n) \) with \(a_0 = 3 \) and \(a_{n+1} = \frac{1}{2} \left(a_n + \frac{3}{a_n} \right) \) is positive for all \(n \in \mathbb{N} \)

b) Solve the inequality \(\frac{1}{2} \left(x + \frac{3}{x} \right) > \sqrt{3} \) to \(x \) and show that the sequence from a) has the lower bound \(\sqrt{3} \).

c) Show that the sequence from a) is monotonically decreasing.

d) Find the limit \(a = \lim_{n \to \infty} a_n \) of the sequence from a).

Hint: For \(n \to \infty \) holds \(a_n = a_{n+1} = \lim_{n \to \infty} a_n = a \). Thus in the recursive formula you can plug in \(a_n = a_{n+1} = a \) and the solve to \(a \).
5.7. Solutions to the exercises on sequences and series

Exercise 1: Linear and exponential growth
All lengths are given in dm, all areas in dm²:

a) \(U_0 = 4, U_1 = 6, U_2 = 8, U_3 = 10 \) and \(U_4 = 12 \)

b) \(U_{n+1} - U_n = 2 \) (linear growth)

c) \(U_{n+1} = U_n + 2 \) (recursive formula)

d) \(U_n = 4 + 2n \) (general formula)

e) \(A_0 = 1, A_1 = 1 + \frac{1}{3} \approx 1.33, A_2 = 1 + \frac{1}{3} + \frac{1}{9} \approx 1.44, A_3 = 1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} \approx 1.48 \)

and \(A_4 = 1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{81} \approx 1.49 \)

f) \(A_{n+1} - A_n = 3^{n+1}, \left(\frac{1}{3} \right)^{n+1} = \left(\frac{1}{3} \right)^{n+1} \) (exponential growth)

g) \(A_{n+1} = A_n + \left(\frac{1}{3} \right)^{n+1} \) (recursive formula)

h) \(A_n = 1 + \left(\frac{1}{3} \right)^1 + \left(\frac{1}{3} \right)^2 + \ldots + \left(\frac{1}{3} \right)^n = \frac{1 - 1/3^{n+1}}{1 - 1/3} = \frac{3}{2} \left(1 - \left(\frac{1}{3} \right)^{n+1} \right) = \frac{3}{2} - \frac{3}{2} \left(\frac{1}{3} \right)^n \) (general formula)

i) \(U_{100} = 204 \) and \(A_{100} \approx 1,5 \) ⇒ The circumference grows beyond all bounds but the area is bounded!

j) \(\lim_{n \to \infty} A_n = \lim_{n \to \infty} \frac{3}{2} \left(1 - \left(\frac{1}{3} \right)^n \right) = \frac{3}{2} \)

Exercise 2: Calculating terms with recursive and general formulae

a) \(a_0 = 100; a_1 = 50; a_2 = 25; a_3 = 12.5; a_4 = 6.25 \)

b) \(a_0 = 50; a_1 = 75; a_2 = 87.5; a_3 = 93.75; a_4 = 96.875 \)

c) \(a_0 = 1; a_1 = \frac{1}{2}; a_2 = \frac{1}{3}; a_3 = \frac{1}{4}; a_4 = \frac{1}{5} \)

d) \(a_0 = 2; a_1 = 6; a_2 = 12; a_3 = 30 \) and no limit

e) \(a_0 = 3; a_1 = 3.5; a_2 = 4; a_3 = 4.5; a_4 = 5 \)

f) \(a_0 = 3; a_1 = 4.5; a_2 = 6.75; a_3 = 10.125; a_4 = 15.1875 \)

g) \(a_0 = 3; a_1 = 4; a_2 = 4.5; a_3 = 4.75; a_4 = 4.875 \)

h) \(a_0 = 3; a_1 = 3.3; a_2 = 3.74; a_3 = 3.98; a_4 = 4.18 \)

Exercise 3: Finding general and recursive formulae from given terms of a sequence

a) \(a_{n+1} = a_n + 2 \) with \(a_0 = 1 \) ⇒ \(a_n = 1 + 2n \)

b) \(a_{n+1} = 2a_n \) with \(a_0 = 3 \) ⇒ \(a_n = 3 \cdot 2^n \)

c) \(a_{n+1} = 3a_n \) with \(a_0 = 2 \) ⇒ \(a_n = 2 \cdot 3^n \)

d) \(a_{n+1} = a_n + 2n + 3 \) with \(a_0 = 2 \) ⇒ \(a_n = n^2 + 1 \)

Exercise 4: Converting general formulae into general formulae

a) \(a_{n+1} = a_n + 3 \) with \(a_0 = 2 \)

b) \(a_{n+1} = a_n + 2n - 1 \) with \(a_0 = 0 \)

c) \(a_{n+1} = a_n + 1 \) with \(a_0 = 1 \)

d) \(a_{n+1} = a_n + \frac{1}{n+1(n+2)} \) with \(a_0 = 0 \)

Exercise 5: Converting recursive formulae into general formulae

a) \(a_n = 3^n + 2 \)

b) \(a_n = 20 \cdot 0.8^n \)

c) \(a_n = n(n+1) \)

d) \(a_n = n^2 \)
Exercise 6: Monotonicity of a sequence

a) monotonically increasing, since \(\frac{a_{n+1}}{a_n} = \frac{n(n+1)}{(n+2)(n-1)} = \frac{n^2 + n}{n^2 + n - 2} > 1 \) for all \(n \in \mathbb{N} \).

b) monotonically increasing, since \(\frac{a_{n+1}}{a_n} = \frac{\sqrt{(n+1)^2 - (n+1)}}{\sqrt{n^2 - n}} = \frac{n^2 + n}{\sqrt{n^2 - n}} > 1 \) for all \(n \in \mathbb{N} \).

(c) monotonically increasing for \(n \geq 2 \),

since \(a_{n+1} - a_n = (n+1)^3 - 3(n+1)^2 - n^3 + 3n^2 = 3n^2 - 3n - 2 = 3(n^2 - n - \frac{2}{3}) > 0 \) for \(n \geq 2 \)

d) monotonically decreasing for \(n \geq 2 \),

since \(a_{n+1} - a_n = (n+1)^2 - 2^{-(n+1)} - n^2 \cdot 2^n = 2^{-(n+1)}(n^2 + 2n + 1 - 2n^2) = 2^{-(n+1)}(n^2 + 2n + 1) < 0 \) for \(n \geq 2 \)

Exercise 7: Boundedness of a sequence

a) Upper bound \(S_n = 1 \), since \(a_n \leq 1 \) \(\Rightarrow \frac{n}{n+1} \leq 1 \) for all \(n \in \mathbb{N} \) and lower bound \(S_n = 0 \), since \(a_n \geq 0 \) \(\Rightarrow \frac{n}{n+1} \geq 0 \) for all \(n \in \mathbb{N} \).

b) No upper bound \(S \), since there is no \(S \in \mathbb{R} \) with \(a_n \leq S \) \(\Rightarrow \sqrt{n^2 + n} \leq S \) \(\Rightarrow n^2 + n \leq S^2 \) for all \(n \in \mathbb{N} \).

Lower bound \(S_n = 0 \), since \(a_n \geq 0 \) \(\Rightarrow \sqrt{n^2 + n} \geq 0 \) for all \(n \in \mathbb{N} \).

c) Upper bound \(S_n = 0 \), since \(a_n \leq 0 \) \(\Rightarrow n^2 - n^3 \leq 0 \) \(\Rightarrow n^2(1 - n) \leq 0 \) for all \(n \in \mathbb{N} \).

No lower bound \(S \), since there is no \(S \in \mathbb{R} \) with \(a_n \geq S \) \(\Rightarrow n^2 - n^3 \geq S \) for all \(n \in \mathbb{N} \).

d) Upper bound \(S_n = 1 \), since \(a_n \leq 1 \) \(\Rightarrow n^2 \cdot 3^{-n} \leq 1 \) \(\Rightarrow n^2 \leq 3^a \) for all \(n \in \mathbb{N} \).

Lower bound \(S_n = 0 \), since \(n^2 \cdot 3^{-n} \geq 0 \) for all \(n \in \mathbb{N} \).

Exercise 8: Limit of a sequence

We have to show that for any \(\varepsilon > 0 \) there is a \(n_0 \) so that the condition \(|a_n - a| < \varepsilon \) holds for all \(n > n_0 \).

a) \(\lim_{n \to \infty} a_n = 1 \), since \(|a - a_n| \leq \varepsilon \) \(\Leftrightarrow |1 - \frac{n+2}{n+1}| \leq \varepsilon \) \(\Leftrightarrow |\frac{1}{n+1}| \leq \varepsilon \) \(\Leftrightarrow \frac{1}{n+1} \leq \varepsilon \) holds for all \(n \geq n_0 = \frac{1}{\varepsilon} - 1 \).

b) \(\lim_{n \to \infty} a_n = 1 \), since \(|a - a_n| \leq \varepsilon \) \(\Leftrightarrow |1 - \frac{1}{\sqrt{n^2 + n}}| \leq \varepsilon \) \(\Leftrightarrow 1 - \sqrt{1 + \frac{1}{n}} \leq \varepsilon \) \(\Leftrightarrow \sqrt{1 + \frac{1}{n}} \leq 1 - \varepsilon \)

\(\Rightarrow 1 + \frac{1}{n} \leq (1 - \varepsilon)^2 \Rightarrow \frac{1}{1 - (1 - \varepsilon)} \leq n \Rightarrow \frac{\varepsilon}{(2 - \varepsilon)} \leq n \) holds for all \(n \geq n_0 = \frac{\varepsilon}{(2 - \varepsilon)} \).

c) \(\lim_{n \to \infty} a_n = 0 \), since \(|a - a_n| \leq \varepsilon \) \(\Leftrightarrow |\frac{1}{n} \sin(n)| \leq \varepsilon \) \(\Leftrightarrow \frac{1}{n} \leq \varepsilon \) holds for all \(n \geq n_0 = \frac{1}{\varepsilon} \).

d) \(\lim_{n \to \infty} a_n = 0 \), since \(|a - a_n| \leq \varepsilon \) \(\Leftrightarrow |n^2 \cdot 2^{-n}| \leq \varepsilon \) \(\Leftrightarrow \frac{1}{n^2} \leq \frac{2^n}{\varepsilon} \) holds for all \(n \geq 10 \).

Exercise 9: Convergence of a sequence

a) Boundedness: \(a_n = \frac{1 - 4n}{1 + 2n} = -2 + \frac{3}{1 + 2n} \Rightarrow -2 < a_n < 1 \), since \(a_n + 2 = \frac{3}{1 + 2n} \) and \(0 < \frac{3}{1 + 2n} < 3 \)

Monotonicity: \(a_{n+1} - a_n = \frac{3}{1 + 2(n+1)} - \frac{3}{1 + 2n} = \frac{3}{2n + 3} - \frac{3}{2n + 1} = 0 \Rightarrow (a_n) \) decreases monotonically (to \(\lim_{n \to \infty} a_n = -2 \))

b) Boundedness: \(a_n = \frac{n - 1}{2n} = \frac{1}{2} - \frac{1}{2n} \Rightarrow 0 < a_n < \frac{1}{2} \), since \(0 < \frac{1}{2n} < \frac{1}{2} \).

Monotonicity: \(a_{n+1} - a_n = -\frac{1}{2(n+1)} + \frac{1}{2n} > 0 \Rightarrow (a_n) \) increases monotonically (to \(\lim_{n \to \infty} a_n = \frac{1}{2} \))
c) Boundedness: \(a_n = \frac{2^n + 3^n}{2^n - 3^n} = \frac{3^2 \left(\frac{n}{3} + 1 \right)}{3^2 \frac{n}{3} - 1} \Rightarrow -2 < a_n < 0, \text{ since } 0 < \frac{1 + \frac{2^n}{3^2}}{1 - \frac{2^n}{3^2}} < 1 + \frac{2^n}{3^2} < 2\)

Monotonicity: \(a_{n+1} - a_n = \frac{2^{n+1} + 3^{n+1}}{2^{n+1} - 3^{n+1}} - \frac{2^n + 3^n}{2^n - 3^n} = \frac{2^n(2^{n+1} - 3^{n+1}) + 3^{n+1}(2^n - 3^n)}{(2^{n+1} - 3^{n+1})(2^n - 3^n)} = \frac{2^{n+1} - 2^n + 3^{n+1} - 3^n}{(2^{n+1} - 3^{n+1})(2^n - 3^n)} \Rightarrow (a_n) \text{ increases monotonically (to } \lim_{n \to \infty} a_n = -1)\)

d) Boundedness: \(a_n = \frac{\sqrt{n^2} + 10}{n^2} = \frac{1}{\sqrt{n} + 10} \Rightarrow 0 < a_n < 1 + 10 = 11\)

Monotonicity: \(a_{n+1} - a_n = \frac{1}{\sqrt{n + 1}} + \frac{10}{(n + 1)^2} - \frac{1}{\sqrt{n}} - \frac{10}{n^2} = \left(\frac{1}{\sqrt{n + 1}} - \frac{1}{\sqrt{n}} \right) + \frac{10}{(n + 1)^2} - \frac{10}{n^2} < 0, \text{ since both brackets < 0}\)

\(\Rightarrow (a_n) \text{ decreases monotonically (to } \lim_{n \to \infty} a_n = 0)\)

Exercise 10: Series and sigma notation

<table>
<thead>
<tr>
<th>Generating sequence (a_n)</th>
<th>Series (\sum_{k=0}^{n} a_k)</th>
<th>Corresponding function (f(x))</th>
<th>Integral (\int_{1}^{n+1} f(x)dx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{n})</td>
<td>(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots)</td>
<td>(\frac{1}{x})</td>
<td>(\ln(n + 1))</td>
</tr>
<tr>
<td>(\frac{1}{3^n})</td>
<td>(1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \ldots)</td>
<td>(\frac{1}{3^n})</td>
<td>(3 \cdot \ln(3) \left(1 - \frac{1}{3^n} \right))</td>
</tr>
<tr>
<td>(\frac{1}{n^2})</td>
<td>(1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \ldots)</td>
<td>(\frac{1}{x^2})</td>
<td>(1 - \frac{1}{n + 1})</td>
</tr>
<tr>
<td>(\frac{1}{n(n+1)})</td>
<td>(\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \ldots)</td>
<td>(\frac{1}{x(x+1)} = \frac{1}{x} - \frac{1}{x+1})</td>
<td>(\ln(2) + \ln \left(\frac{n + 1}{n + 2} \right))</td>
</tr>
</tbody>
</table>

Exercise 11: Arithmetic series

a) \(\sum_{k=0}^{100} a_k = 63\) and \(\sum_{k=1}^{100} a_k = \sum_{k=0}^{99} a_k = 707 - 297 = 410\).

b) \(\sum_{k=0}^{16} a_k = 119\) and \(\sum_{k=0}^{80} a_k = \sum_{k=0}^{79} a_k = 1863 - 510 = 1353\).

c) \(\sum_{k=0}^{9} a_k = 110d + 55d = 22 \Rightarrow a_0 + 5d = 2\) and \(\sum_{k=0}^{9} a_k = 7a_0 + 21d = 7 \Rightarrow a_0 + 3d = 1\) result in \(a_0 = -\frac{1}{2}\) and \(d = \frac{1}{2}\)

d) \(\sum_{k=0}^{90} a_k = 91 - 1 + 4095d = \sum_{k=0}^{9} a_k + 31 \cdot 10 - 1 + 45d + 31 \approx 91 + 4095d = 41 + 45d \approx 50 = 4050\) d result in \(d = \frac{1}{81}\)

Exercise 12: Geometric series

a) \(\sum_{k=0}^{20} a_k = 1000(1 - 0.9^{20}) = 890,581\) and \(\sum_{k=0}^{100} a_k = 1000(1 - 0.9^{100}) = 999,976\).

b) \(\sum_{k=0}^{12} a_k = 15 - (1.2^{12} - 1) \approx 96,45\) and \(\sum_{k=0}^{90} a_k = 15 - (1.2^{91} - 1) \approx 163,792,89\)

c) \(\sum_{k=0}^{6} a_k = a_0 \frac{q^7 - 1}{q - 1} = 641\) and \(\sum_{k=0}^{\infty} a_k = a_0 \frac{q^4 - 1}{q - 1} = 625\) result in \(\frac{q^8 - 1}{q^4 - 1} = \frac{641}{625} \approx (q^4 - 1)(q^4 + 1) \approx 1.0256\)

\(\Rightarrow q^4 = 0.256 \Rightarrow common\ ratio\ q = 0.4\) and initial value \(a_0 \approx 384.85\)

d) \(\sum_{k=0}^{4} a_k = a_0 \frac{q^5 - 1}{q - 1} = 336.16\) and limit \(\sum_{k=0}^{\infty} a_k = a_0 \frac{1}{1 - q} = 500\) result in \(q^5 - 1 = 336.16 \approx 500 \Rightarrow q^5 = 0.32768 \Rightarrow common\ ratio\ q = 0.8\) and initial value \(a_0 = 100\).
Exercise 13: Limit of a series

a) \(s_n = \sum_{k=1}^{n} \frac{1}{k^2} \) is monotonically increasing, since \(s_{n+1} - s_n = \frac{1}{(n+1)^2} > 0 \) for all \(n \in \mathbb{N} \). \((s_n)\) is bounded above, since
\[
 s_n = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} < 1 + \int_1^n \frac{1}{x^2} \, dx = 1 + \left[-\frac{1}{x}\right]_1^n = 2 - \frac{1}{n} < 2 \text{ for all } n \in \mathbb{N}. \text{ Therefore } (s_n) \text{ converges to a limit } \lim_{n \to \infty} s_n \leq 2. \text{ L. Euler showed in 1736, that } \lim_{n \to \infty} s_n = \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6} \approx 1.64
\]

b) \(s_n = \sum_{k=0}^{n} \frac{1}{(2k+1)^2} \) is monotonically increasing, since \(s_{n+1} - s_n = \frac{1}{(2n+3)^2} > 0 \) for all \(n \in \mathbb{N} \). \((s_n)\) is bounded above, since
\[
 s_n = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \ldots + \frac{1}{(2n)^2} < 1 + \int_1^n \frac{1}{x^2} \, dx = 1 + \left[-\frac{1}{x}\right]_1^n = 2 - \frac{1}{2n+1} < \frac{3}{2} \text{ for all } n \in \mathbb{N}. \text{ Therefore } (s_n) \text{ converges to } \lim_{n \to \infty} s_n \leq \frac{3}{2}. \text{ L. Euler showed, that } \lim_{n \to \infty} s_n = \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{8} \approx 1.23
\]

c) \(s_n = \sum_{k=0}^{n} \frac{1}{3^k} \) is monotonically increasing, since \(s_{n+1} - s_n = \frac{1}{3^n} > 0 \) for all \(n \in \mathbb{N} \). \((s_n)\) is bounded above, since
\[
 s_n = 1 + \frac{1}{3} + \frac{1}{9} + \ldots + \frac{1}{3^n} < \int_{-1}^n e^{-\ln(3)x} \, dx = \left[-\frac{1}{\ln(3)} e^{-\ln(3)x}\right]_{-1}^n = \frac{3}{\ln(3)} - \frac{1}{\ln(3)} \cdot 3^n < \frac{3}{\ln(3)} \text{ for } n \in \mathbb{N}. \text{ Therefore } (s_n) \text{ converges to } \lim_{n \to \infty} s_n \leq \frac{3}{\ln(3)}. \text{ The exact value of this limit can be obtained by using the summation rule for geometric series: } \sum_{k=0}^{\infty} \frac{1}{3^k} = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{3^k} = \lim_{n \to \infty} 1 - \frac{(1/3)^{n+1}}{1 - 1/3} = \frac{1}{2}.
n
\]

d) \(s_n = \sum_{k=1}^{n} \frac{1}{n+k} \) is monotonically increasing, since \(s_{n+1} - s_n = \frac{1}{2n+2} + \frac{1}{2n+1} - \frac{1}{n+1} = \frac{1}{2n+1} - \frac{1}{2n+2} > 0 \) for \(n \in \mathbb{N} \). \((s_n)\) is bounded above, since
\[
 s_n = \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \ldots + \frac{1}{n+k} < \int_0^n \frac{1}{n+x} \, dx = \ln(n+x) \big|_0^n = \ln(2n) - \ln(n) = \ln(2)
\]
for all \(n \geq 1 \) and \(s_0 = 1 \). Therefore \((s_n)\) converges to \(\lim_{n \to \infty} s_n \leq \ln(2) \).

Exercise 14: Mathematical induction

a) Base case \(n = 1: 2 = 1(1+1) \)

Inductive step \(n \Rightarrow n + 1: \)

Inductive hypothesis for some \(n: 2 + 4 + 6 + \ldots + 2n = n(n + 1) \)

We have to show the statement for \(n + 1: 2 + 4 + 6 + \ldots + 2n + 2(n + 2) = (n + 1)(n + 2) \)

Plug the hypothesis into the left side:
\[
2 + 4 + 6 + \ldots + 2n + 2(n + 2) = n(n + 1) + 2n + 2 = n^2 + 3n + 2
\]

Right side: \((n + 1)(n + 2) = n^2 + 3n + 2 \) qed

b) Base case \(n = 1: 1^2 = \frac{1}{6} \cdot 1(1+1)(2+1) = 1 \)

Inductive step \(n \Rightarrow n + 1: \)

Inductive hypothesis for some \(n: 1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{1}{6} n(n + 1)(2n + 1) \)

We have to show the statement for \(n + 1: 1^2 + 2^2 + 3^2 + \ldots + n^2 + (n + 1)^2 = \frac{1}{6} (n + 1)(n + 2)(2n + 3) \)

Plug the hypothesis into the left side:
\[
1^2 + 2^2 + 3^2 + \ldots + n^2 + (n + 1)^2 = \frac{1}{6} n(n + 1)(2n + 1) + (n + 1)^2 = \frac{1}{3} n^3 + \frac{3}{2} n^2 + \frac{13}{6} n + 1
\]

Right side: \(\frac{1}{6} (n + 1)(n + 2)(2n + 3) = \frac{1}{6} (2n^3 + 9n^2 + 13n + 6) = \frac{1}{3} n^3 + \frac{3}{2} n^2 + \frac{13}{6} n + 1 = \text{left side. qed} \)
c) Base case $n = 1$: $6 = \frac{1}{4} \cdot 1 \cdot 2 \cdot 3 \cdot 4 = 6$

Inductive step $n \Rightarrow n + 1$:

Inductive hypothesis for some n: $6 + 24 + 60 + \ldots + n(n + 1)(n + 2) = \frac{1}{4} n(n + 1)(n + 2)(n + 3)$

We have to show the statement for $n + 1$:

$6 + 24 + 60 + \ldots + n(n + 1)(n + 2) + (n + 1)(n + 2)(n + 3) = \frac{1}{4} (n + 1)(n + 2)(n + 3)(n + 4)$

Plug the hypothesis into the left side:

$6 + 24 + 60 + \ldots + n(n + 1)(n + 2) + (n + 1)(n + 2)(n + 3) = \frac{1}{4} n(n + 1)(n + 2)(n + 3) + (n + 1)(n + 2)(n + 3)$

$= \frac{1}{4} (n + 1)(n + 2)(n + 3)(n + 4) = \text{right side, qed.}$

d) Base case $n = 0$: $1 = \frac{1}{1-x}$

Inductive step $n \Rightarrow n + 1$:

Inductive hypothesis for some n: $x^0 + x^1 + x^2 + x^3 + \ldots + x^n = \frac{1- x^{n+1}}{1-x}$

We have to show the statement for $n + 1$: $x^0 + x^1 + x^2 + x^3 + \ldots + x^n + x^{n+1} = \frac{1- x^{n+2}}{1-x}$

Plug the hypothesis into the left side:

$x^0 + x^1 + x^2 + x^3 + \ldots + x^n + x^{n+1} = \frac{1}{1-x} + x^{n+1} = \frac{1- x^{n+1} + x^{n+1} - x^{n+2}}{1-x} = \frac{1- x^{n+2}}{1-x} = \text{right side, qed}$

e) Base case $n = 1$: $1 = \frac{1-2x + x^2}{(1-x)^2} = 1$

Inductive step $n \Rightarrow n + 1$:

Inductive hypothesis for some n: $1 + 2x + 3x^2 + 4x^3 + \ldots + nx^n = \frac{1-(n+1)x^{n+1} + nx^{n+1}}{(1-x)^2}$

We have to show the statement for $n + 1$: $1 + 2x + 3x^2 + 4x^3 + \ldots + nx^n + (n+1)x^n = \frac{1-(n+2)x^{n+1} + (n+1)x^{n+2}}{(1-x)^2}$

Plug the hypothesis into the left side:

$\frac{1}{(1-x)^2} - \frac{(n+1)x^n + nx^{n+1}}{(1-x)^2} + (n+1)x^n = \frac{1-(n+1)x^n + nx^{n+1} + (1-x)^2(n+1)x^n}{(1-x)^2}$

$= \frac{1-(n+1)x^n + nx^{n+1} + (n+1)x^n + 2(n+1)x^{n+1} + (n+1)x^{n+2}}{(1-x)^2}$

$= \frac{1-(n+2)x^{n+1} + (n+1)x^{n+2}}{(1-x)^2} = \text{right side, qed}$

f) Base case $n = 1$: $2 = \frac{1}{3} \cdot 1 \cdot 2 \cdot 3 = 2$

Inductive step $n \Rightarrow n + 1$:

Inductive hypothesis for some n: $a_n = \frac{1}{3} n(n + 1)(n + 2)$

We have to show the statement for $n + 1$: $a_{n+1} = \frac{1}{3} (n + 1)(n + 2)(n + 3)$

Plug the hypothesis into the left side:

$a_{n+1} = a_n + (n+ 1)(n + 2) = \frac{1}{3} n(n + 1)(n + 2) + (n + 1)(n + 2) = \frac{1}{3} n^3 + n^2 + \frac{2}{3} n + n^2 + 3n + 2 = \frac{1}{3} n^3 + 2n^2 + \frac{11}{3} n + 2$

Right side: $\frac{1}{3} (n + 1)(n + 2)(n + 3) = \frac{1}{3} (n^3 + 3n^2 + 2n^2 + 3n + 2) = \frac{1}{3} n^3 + 2n^2 + \frac{11}{3} n + 2 = \text{left side, qed.}$
g) **Base case for** \(n = 1: \frac{3}{4} = \frac{2+1}{3+1} = \frac{3}{4} \)

Inductive step \(n \to n + 1:\)

Inductive hypothesis for some \(n: a_n = \frac{2n+1}{3n+1} \)

We have to show the statement for \(n + 1: a_{n+1} = \frac{2n+3}{3n+4} \)

Plug the hypothesis into the left side:

\[
a_{n+1} = a_n - \frac{a_n}{(3n+4)(2n+1)} = \frac{2n+1}{3n+1} \left(1 - \frac{1}{(3n+4)(2n+1)}\right) = \frac{2n+1}{3n+1} \left(1 + \frac{6n^2 + 13n + 3}{(3n+4)(2n+1)}\right) = \frac{2n+1}{3n+1} \left(\frac{(3+1)(2n+3)}{3n+4}(2n+1)\right) = \frac{2n+3}{3n+4}
\]

\(= \) right side. \(\text{qed.} \)

h) Base case \(n = 1: 8^1 - 1 = 7 \) obviously is divisible by 7

Inductive step \(n \Rightarrow n + 1:\)

Inductive hypothesis for some \(n: 8^n - 1 \) is divisible by 7

We have to show the statement for \(n + 1: 8^{n+1} - 1 = 8 \cdot 8^n - 1 = 7 \cdot 8^n + 8^n - 1 \) is divisible by 7

Obviously the first summand \(7 \cdot 8^n \) is divisible by 7. **According to the inductive hypothesis** the second summand \(8^n - 1 \) too is divisible by 7 and therefore the complete sum is divisible by 7. \(\text{qed.} \)

i) Base case \(n = 1: 2^3 - 2 = 6 \) is divisible by 6

Inductive step \(n \Rightarrow n + 1:\)

Inductive hypothesis for some \(n: n^3 - n \) is divisible by 6

We have to show the statement for \(n + 1:\)

\[
(n + 1)^3 - (n + 1) = n^3 + 3n^2 + 2n = (n^3 - n) + (3n^2 + 3n) = (n^3 - n) + 6 \cdot \frac{1}{2} n(n + 1) \text{ is divisible by 6}
\]

According to the inductive hypothesis the left summand \(n^3 - n \) is divisible by 6. But since either \(n \) or \(n + 1 \) is even, \(\frac{1}{2} n(n + 1) \) is an integer. Therefore the right summand \(6 \cdot \frac{1}{2} n(n + 1) \) too is divisible by 6 and so is the complete sum. \(\text{qed.} \)

j) Base case \(n = 2: (1 + x)^2 = 1 + 2x + x^2 > 1 + 2x, \text{ since } x^2 > 0 \)

Inductive step \(n \Rightarrow n + 1:\)

Inductive hypothesis for some \(n: (1 + x)^n > 1 + nx \)

We have to show the statement for \(n + 1: (1 + x)^{n+1} > 1 + (n + 1)x \)

*Plug the hypothesis into the left side:

\[
(1 + x)^{n+1}(1 + x) > (1 + nx)(1 + x), \text{ since we assume } 1 + x > 0
\]

\[
= 1 + (n + 1)x + x^2
\]

\[
> 1 + (n + 1)x, \text{ since } x^2 > 0
\]

\[
= \text{right side. \(\text{qed.} \)}
\]

Aufgabe 15: Mathematical induction, Monotonicity and Boundedness

a) Base case \(n = 0: a_0 = 3 > 0 \)

Inductive step \(n \Rightarrow n + 1:\)

Inductive hypothesis for some \(n: a_n > 0 \)

We have to show the statement for \(n + 1: a_{n+1} > 0 \)

*Use the hypothesis: \(a_{n+1} = \frac{1}{2} \left(a_n + \frac{3}{a_n} \right) > 0, \text{ since } a_n > 0, \text{ qed.} \)

**b) \(\frac{1}{2} (x + \frac{3}{x}) > \sqrt{3} \iff x + \frac{3}{x} > 2 \sqrt{3} \iff x^2 + 3 > 2 \sqrt{3} x \iff x^2 - 2 \sqrt{3} x + 3 > 0 \iff (x - \sqrt{3}) > 0 \text{ for } x \in \mathbb{R}. \)

**c) \(a_{n+1} - a_n = \frac{1}{2} \left(a_n + \frac{3}{a_n} \right) - a_n = \frac{1}{2} \left(\frac{3 - a_n^2}{a_n} \right) > 0, \text{ because in b) we have shown } a_n^2 < 3 \Rightarrow (a_n) \text{ is monotonically decreasing.} \)

d) For \(n \to \infty \text{ we have } a_n = a_{n+1} \lim_{n \to \infty} a_n = a \text{ and so } a = \frac{1}{2} \left(a + \frac{3}{a} \right) \iff \frac{1}{2} a = 1 \pm \frac{3}{a} \iff a^2 = 3 \iff a = \text{ if } a > 0 \text{ because of } a) \)

\(= \lim_{n \to \infty} a_n = \sqrt{3}. \)